Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Membrane-Based Nitrogen-Enriched Air for NOx Reduction in Light-Duty Diesel Engines

2000-03-06
2000-01-0228
The effects of nitrogen-enriched air, supplied by an air separation membrane, on NOx emissions from a 1.9-L turbocharged direct-injection diesel engine were investigated. To enrich combustion air with more nitrogen, prototype air separation membranes were installed between the after-cooler and intake manifold without any additional controls. The effects of nitrogen-enriched combustion air on NOx emissions were compared with and without exhaust gas recirculation (EGR). At sufficient boost pressures (>50 kPag), nitrogen-enriched air from the membrane provided intake oxygen levels that were similar to those of EGR. Compared with EGR, nitrogen-enriched air provided 10-15% NOx reductions during medium to high engine loads and speeds. At part loads, when turbocharger boost pressure was low, the air separation membrane was not effective in enriching air with nitrogen. As a result, NOx reduction was lower, but it was 15-25% better than when EGR was not used.
Technical Paper

Diesel Spray Development of VCO Nozzles for High Pressure Direct-Injection

2000-03-06
2000-01-1254
Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the evaporation of atomized fuel and the onset of combustion is relatively short. An investigation into various spray characteristics from different holes of VCO nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from each hole in the multi hole nozzles were measured with back light imaging while the sprays from the other holes were covered by a purpose-built nozzle cap.
Technical Paper

Hydrocarbon Emissions from a Gas Fueled SI Engine under Lean Burn Conditions

1999-10-25
1999-01-3512
The concentrations of individual exhaust hydrocarbon species were measured as a function of air-fuel ratio and EGR in a 2-liter four-cylinder engine using a gas chromatography, for natural gas and LPG. NMHC in addition to the species of HC, other emissions such as CO2, CO and NOx were at 1800rpm for two compression ratios (8.6 and 10.6) and various EGR ratios up to 7%. Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean burn conditions. It was found that CO2 emission decreased leaner mixture strength, the higher compression ratio and certainly with smaller C value of fuel. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were methane (larger than 60%), ethane, ethylene and propane on the average.
Technical Paper

Gas Flows Through the Inter-Ring Crevice and Their Influence on UHC Emissions

1999-05-03
1999-01-1533
Influence of the inter-ring crevice, the volume between the top and second piston rings, on unburned hydrocarbon (UHC) emission was experimentally and numerically investigated. The ultimate goal of this study was to estimate the level of UHC emission induced by the blow-up of inter-ring mixture, i.e., unburned gases trapped in the inter-ring crevice. In the experiments, the inter-ring mixture was extracted to the crankcase during the late period of expansion and the early period of exhaust stroke through the engraved grooves on the lower part of cylinder wall. Extraction of the mixture resulted in the significant reductions of UHC emission in proportion to the increments of blowby flow rate, without any losses in efficiency and power. This experimental study has confirmed the importance of inter-ring crevice on UHC emission in an SI engine and established a relationship between the inter-ring mixture and UHC emission.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Application of a Wide Range Oxygen Sensor for the Misfire Detection

1999-05-03
1999-01-1485
A new concept of misfire detection in spark ignition engines using a wide-range oxygen sensor is introduced. A wide-range oxygen sensor, installed at the confluence point of the exhaust manifold, was adopted to measure the variation in oxygen concentration in case of a misfire. The signals of the wide-range oxygen sensor were characterized over the various engine-operating conditions in order to decide the monitoring parameters for the detection of the misfire and the corresponding faulty cylinder. The effect of the sensor position, the transient response characteristics of the sensor and the cyclic variation in the signal fluctuation were also investigated. Limited response time of a commercially available sensor barely allowed to observe misfire. It was found that a misfiring could be distinguished more clearly from normal combustion through the differentiation of the sensor response signal. The differentiated signal has twin peaks for a single misfiring in a cylinder.
Technical Paper

Heavy Vehicle Propulsion Materials Program

1999-04-28
1999-01-2254
The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future.
Technical Paper

Overview of the DOE Heavy Vehicle Technologies R&D Program

1999-04-26
1999-01-2235
The DOE Office of Heavy Vehicle Technologies (OHVT) focuses its research and development efforts on technologies that are critical to the needs of the U.S. heavy vehicle industry because of the importance of trucks and other heavy vehicles to economic activity and growth. A strategy has been crafted in collaboration with OHVT's industry customers (truck and engine manufacturers, fuel developers/producers, and their suppliers, truck users, and others) that will enable future energy demand of the U.S. heavy vehicle industry to be met, with reduced dependence on imported oil, and without adverse environmental effects. This strategy is centered on the technical strengths of the advanced compression-ignition (Diesel cycle) engine and its potential to use fuels from alternative feedstocks, and to reduce exhaust emissions to very low levels.
Technical Paper

Modeling of Proportional Control Solenoid Valve for Automatic Transmission Using System Identification Theory

1999-03-01
1999-01-1061
As most of today's automatic transmissions adopt a electro-hydraulic control system, the role of electronically controlled solenoid valves occupies an important position. This paper presents a dynamic modelling technique of a proportional control solenoid valve(PCSV) for automatic transmissions in terms of the system identification theory, and analyzes the dynamic characteristics of the PCSV in frequency domain. Also we find that there are good matches between the nonlinear dynamic simulation results and the experimental data.
Technical Paper

Gaseous and Particulate Emissions from a Vehicle with a Spark-Ignition Direct-Injection Engine

1999-03-01
1999-01-1282
Particulate and gaseous emissions from a Mitsubishi Legnum GDI™ wagon were measured for FTP-75, HWFET, SC03, and US06 cycles. The vehicle has a 1.8-L spark-ignition direct-injection engine. Such an engine is considered a potential alternative to the compression-ignition direct-injection engine for the PNGV program. Both engine-out and tailpipe emissions were measured. The fuels used were Phase-2 reformulated gasoline and Indolene. In addition to the emissions, exhaust oxygen content and exhaust-gas temperature at the converter inlet were measured. Results show that the particulate emissions are measurable and are significantly affected by the type of fuel used and the presence of an oxidation catalyst. Whether the vehicle can meet the PNGV goal of 0.01 g/mi for particulates depends on the type of fuel used. Both NMHC and NOx emissions exceed the PNGV goals of 0.125 g/mi and 0.2 g/mi, respectively. Meeting the NOx goal will be especially challenging.
Technical Paper

Total Fuel Cycle Impacts of Advanced Vehicles

1999-03-01
1999-01-0322
Recent advances in fuel-cell technology and low-emission, direct-injection spark-ignition and diesel engines for vehicles could significantly change the transportation vehicle power plant landscape in the next decade or so. This paper is a scoping study that compares total fuel cycle options for providing power to personal transport vehicles. The key question asked is, “How much of the energy from the fuel feedstock is available for motive power?” Emissions of selected criteria pollutants and greenhouse gases are qualitatively discussed. This analysis illustrates the differences among options; it is not intended to be exhaustive. Cases considered are hydrogen fuel from methane and from iso-octane in generic proton-exchange membrane (PEM) fuel-cell vehicles, methane and iso-octane in spark-ignition (SI) engine vehicles, and diesel fuel (from methane or petroleum) in direct-injection (DI) diesel engine vehicles.
Technical Paper

Diethyl Ether (DEE) as a Renewable Diesel Fuel

1997-10-01
972978
Producing and using renewable fuels for transportation is one approach for a sustainable energy future for the United States, as well as the rest of the world. Renewable fuels may also substantially reduce contributions to global climate change. In the transportation sector, ethanol produced from biomass shows promise as a future fuel for spark-ignited engines because of its high octane quality. Ethanol, however, is not a high-quality compression-ignition fuel. Ethanol can be easily converted through a dehydration process to produce diethyl ether (DEE), which is an excellent compression-ignition fuel with higher energy density than ethanol. DEE has long been known as a cold-start aid for engines, but little is known about using DEE as a significant component in a blend or as a complete replacement for diesel fuel.
Technical Paper

Modeling of Airborne Tire Noise Transmission into Car Interior by Using the Vibro-acoustic Reciprocity and the Boundary Element Method

1997-05-20
972046
In this paper, the vibro-acoustic transmission characteristics are investigated in the view point of the airborne noise in the interior cavity due to the tire wall vibrations. The analysis is carried out by categorizing the airborne noise transfer path into the two separate consecutive events. First, the noise transfer from the vibrating tire wall to the exterior car panels is modeled by using the direct boundary element method (BEM). To this end, after discretizing the whole geometry of exterior body panels, tires, and ground into BEM models, vibro-acoustic transfer characteristics are investigated at several frequency components associated with the cavity resonances of tire. Here, cavity resonance frequencies of tire are estimated by BEM and the distribution of tire wall vibrations excited by a special vibro-acoustic source is measured at those frequencies.
Technical Paper

The Prospects for Electric and Hybrid Electric Vehicles: Second-Stage Results of a Two-Stage Delphi Study

1996-08-01
961698
A two-stage Delphi study was conducted to collect information that would enable a technical and economic assessment of electric (EV) and hybrid electric (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994 while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and the major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. The second stage response provided the following key results. EVs will penetrate the market first followed by internal combustion engine powered HEVs while gas turbine and fuel cell powered HEVs will not have any significant penetration until after 2020. By 2020 EVs and internal combustion engine powered HEVs are projected to have approximately a 15% share of the new vehicle market.
Technical Paper

A Study on Efficiency and Emission Enhancements in a 4-Stroke Natural Gas Lean Burn Engine

1996-02-01
960849
Experiments were performed with a 4-stroke, natural gas fueled SI engine to investigate the effects of several parameters on engine performance under lean operating condition. A favorable effect of charge swirl on stable lean burn operation was observed at a conventional compression ratio. There was an optimum EGR rate which gave a substantial reduction in NOx emissions with minor penalties in efficiency and UHC emissions. Marginal improvement was noticed with lean operations in a long spark duration ignition system. The flame jet ignition system displayed noticeable capability in extending the lean limit. In addition, shadowgraph visualization tests were performed for combustion diagnostic purposes.
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Technical Paper

Radiative Heat Transfer in Non-Gray Finite Cylindrical Media with Internal Heat Generations

1989-11-01
891332
Radiative heat transfer analysis in a finite cylindrical enclosure with non-gray media and internal heat generations have been conducted. Solutions are generated by a recently developed spherical harmonics method for a finite cylindrical configuration with the weighted sum of gray gases model. Numerical solutions are obtained for temperature and heat flux distributions with the variations of optical thickness and wall emissivity. The results show that with an increase in the absorption coefficient, the heat flux distribution along the lateral wall becomes symmetric regardless of the source distributions. The dependence of heat flux on the wall emissivity is reduced as well. The present solution technique seems to be easily extended to the coupled mode of heat transfer with convection in an engine cylinder.
Technical Paper

The Prediction of Volumetric Efficiency Considering Gas Exchange Process in Spark Ignition Engine

1987-11-08
871170
The volumetric efficiency for a 4-stroke, single- cylinder, spark- ignition engine is considered. The mathematical model for the gas exchange process was formulated and solved by numerical technique. The mass flow rate, the pressure-time history in cylinder, intake and exhaust pipes, and the volumetric efficiency were calculated. The important parameter affecting volumetric efficiency was the pressure in the pipes. But, the effect of valve timing on volumetric efficiency was small (1, 2)*. The experiments with 3-different cams were performed. The predicted results were compared with experimental data and satisfactory agreement was obtained. As a result, the volumetric efficiency could be predicted with a relatively simple mathematical model.
Technical Paper

Impact of Consumer and Manufacturer Decisions on New Car Fuel Economy

1983-02-01
830545
The 90 percent improvement in new car fuel economy between 1973 and 1982 has resulted from many types of new car purchase and new car manufacture decisions. Some of these decisions, such as purchasing a smaller car, buying a car with less performance, choosing a manual transmission, and selecting a diesel engine can be viewed as primarily new car consumer decisions. Over the decade where the price of gasoline tripled, consumer decisions accounted for about a third of the MPG increase. With the prospect of stable or declining gasoline prices for the near future, consumers may take back some of their past contributions to new car fuel economy. If new car buyers returned to their 1978 choices in auto characteristics the MPG would have been 9.3 percent lower than it actually was recorded in model year 1982. If consumers returned to the 1973 auto characteristics, a 17.4 percent reduction in MPG would have resulted in model year 1982.
Technical Paper

Performance and Exhaust Emission in Spark Ignition Engine Fueled with Methanol-Butane Mixture

1800-01-01
871165
To improve the cold startability of methanol, methanol-butane mixed fuel was experimented. Engine performance and exhaust emissions are obtained with methanol-butane mixed fuel. These characteristics are compared with those of methanol and gasoline. The mixing ratios of methanol and butane are 50:50 (M50), 80:20 (M80), and 90:10 (M90) based on the calorific value. As a result, M90 produces more power than gasoline and more or less than methanol depending on the engine speed and the excess air ratio. Brake horse power of M90 is higher than that of gasoline by 5 - 10 %, and brake specific fuel consumption is smaller than that of gasoline by 17 % to the maximum based on the calorific value. NOx emission concentrations for M90 are lower than those for gasoline and higher than those for methanol because of the effect of butane, CO emission concentrations are somewhat lower than those for methanol and gasoline.
X